How is factoring polynomials used in real life




















In differential equations equations of rates of change , factorization of polynomials of derivatives rates of change is performed to solve what are called "homogeneous equations of arbitrary order. These examples are, of course, far from everyday. And when the factoring gets tough, we have calculators and computers to do the heavy lifting. Instead of expecting a one-to-one match between each mathematical topic taught and everyday calculations, look at the preparation the topic provides for more practical study.

Factoring should be appreciated for what it is: a stepping stone to learning methods of solving increasingly realistic equations. Paul Dohrman's academic background is in physics and economics. He has professional experience as an educator, mortgage consultant, and casualty actuary. His interests include development economics, technology-based charities, and angel investing. How to Factor Binomial Cubes. How to Factor Trinomials on a TI His interests include development economics, technology-based charities, and angel investing.

Algebra 1 Compared to Algebra 2. Interactive Polynomial Games. How to Factor Monomials. Endpoint Math Formula. How to Factor Trinomials on a TI How to Factor Polynomials With Fractions. How to Learn Finite Math. How to Factor Expressions in Algebra. How to Factor Binomial Cubes. What Is the Square Root Method? For example, aerospace engineers may use polynomials to determine acceleration of a rocket or jet, and mechanical engineers use polynomials to research and design engines and machines, according to Purdue University.

Physical and social scientists, including archaeologists, astronomers, meteorologists, chemists and physicists, need to use polynomials in their jobs.

Key scientific formulas, including gravity equations, feature polynomial expressions. These algebraic equations help scientists to measure relationships between characteristics such as force, mass and acceleration. Astronomers use polynomials to help in finding new stars and planets and calculating their distance from Earth, their temperature and other features, according to school-for-champions.

Connect and share knowledge within a single location that is structured and easy to search. The wife and I are sitting here on a Saturday night doing some algebra homework. We're factoring polynomials and both had the same thought at the same time: when will we use this? I feel a bit silly because it always bugged me when people asked that in grade school.

However, we're both working professionals I'm a programmer, she's a photographer and I can't recall ever considering polynomial factoring as a solution to the problem I was solving. Are there real world applications where factoring polynomials could lead to a solution? If you model some phenomenon with a polynomial, it's often of interest to determine when the polynomial evaluates to zero. One of the tools used in deciding when this happens is factoring.

For example, simple trajectory can be modeled with a quadratic function. If you think of time as the input and height as the output, then the positive time for which the polynomial evaluates to zero is precisely the time when the object hits the ground. For polynomials with integer coefficients the question is roughly the same as "what are the practical applications of algebraic number theory".

The usual answers are coding theory and cryptography where factorization and related operations such as testing whether a polynomial can be factorized is part of the basic infrastructure from which systems are built or broken.

Coding is necessary for digital communication including telephone, video and satellites and cryptography has become a basic feature of everyday computer use and commerce. For polynomials with real coefficients there is partial fraction expansion used in calculus to compute integrals. For polynomials with complex numbers as coefficients the factorization is into linear factors so that factoring is practically the same as numerical root finding and this is in part true for real numbers as well.

Problems in engineering where the location of complex roots of a polynomial determines the behavior of the system are common. For example, stability or instability can be decided by whether all the roots are inside the unit circle, or have positive real part, or other location-based criteria. A system governed by a partial differential equation would show diffusion like heat or wave-like behavior based on the factorization of an associated "differential operator", which is essentially a polynomial.

In general, many phenomena are decomposable into components, pieces or subsystems in a way that when the systems are modeled mathematically appears as a multiplicative decomposition of polynomials, with one factor per subsystem. When people including my students ask me questions like this my internal fuses blow out, I usually reply with a very cynical tone something along the following lines:. This is useless. Everything that you study here is completely useless to you later on in life, if you prefer not to study this you can go to a college, or change profession.

This university wants you to enrich you with a broader knowledge, either take it or leave it. Of course, I am lying. Everything that you study can come into use sometimes, often in unexpected places. It is possible that one day number theory will save your life.

In the meantime you can just view your studying as a way of learning to do things abstractly. Why is that important? Problems are often similar, though one needs to climb one or more level of abstraction to see that. For example, if I asked you to take out 3 oranges from a pile of 10 oranges. Would this be any different if those were apples? It would probably be the same. This level of abstraction is very simple.

On the other hand, asking you to find the best route to get from one class to another taking into account the weather, the possible amount of people walking between classes as well, and so on. This problem may seem very different than asking you to buy food for a week with optimal budget you don't want to spend all your money on groceries, right?

In reality they are different problems, and one would likely to employ different parts of the brain to solve a spatial reasoning problem and an arithmetical problem about money. Mathematically speaking one could represent them both as a complicated weighted-graph; probability and statistics; fuzzy logic; multivariable calculus; and perhaps other fields of mathematics. This is a form of abstraction that people are not usually able to do "just like that".

Furthermore, even if you do find a general solution, applying it to each problem is again not a trivial matter and is often complicated just as the abstraction part. Finally, we reach to the point of my babbling above. Mathematics is a wonderful and abstract tool. If you study it, your ability to make the connections between seemingly unrelated problems is likely to get better, your ability to solve the abstract problems is likely to get better, and as a result your ability to solve the problem at hand is likely to get better.

You are a programmer, you need to be able to deal with a lot of problems, they could come in many forms and many ways. You need to be able to see the abstract similarity, and as a good programmer be able to write abstract tools to handle the general problems. Not to rewrite ad-hoc code to solve each problem on its own. None of the answers so far justify making grade 10 students pointlessly factor polynomials. And for most students, it is indeed a waste of time. Unfortunately, if it were removed from the high school math curriculum, it would be impossible to go on.

Now I will tell you why. Sometimes in life you have to solve a quadratic equation. Not just in school, but in life. It is the basic equation that comes into play when competing factors have to be optimized. You don't always write an equation for these things, but that is what is happening. The classic example is the apple orchard, where you get fewer apples per tree the more you crowd the orchard.

The optimum solution is given by solving a quadratic equation. In real orchards with real apple trees, it is true that the actual equation may not be the simplified quadratic equation of the iconic high school math problem. But the principle of optimization is the same, and it is the quadratic equation which most clearly and in the most simple way illustrates this principle. Perhaps the most important lesson of high school math is that the physical world can be modelled mathematically, and that mathematical equations have solutions.

It is possible to simply write out a formula which solves any quadratic equation but this would be wrong. It obscures the basic idea of what it means to solve an equation mathematically. You cannot begin to explain the general solution of a quadratic equation unless you start with the method of factoring.

As pointless as it seems when you are doing it, that is where it leads to and that is why you can't teach math without it. You need polynomial factoring or what's the same, root finding for higher mathematics. For example, when you are looking for the eigenvalues of a matrix, they appear as the roots of a polynomial, the " characteristic equation ". I suspect that none of this will be of any use to someone unless they continue their mathematical education at least to the junior classes like linear algebra which deals with matrices and differential equations where polynomials also appear.

And I would also bet that the majority of people who take these classes never end up using them in "real life". Factoring is often a key skill for solving problems in which you need to find a value for x. What can x equal in real life? Well, about anything. Being able to solve for x is the foundation of algebra, which itself is the foundation for doing trigonometry and calculus and higher math.

Want some examples? Well, suppose you would like to own a business one day. Say you own a painting company and have several employees.



0コメント

  • 1000 / 1000